
CEWES MSRC/PET TR/98-44

Object Web (Java/CORBA) based RTI to support
Metacomputing M&S

by

G. C. Fox
W. Furmanski
H. T. Ozdemir

08h00298

Work funded wholly or in part by the DoD High Performance
Computing Modernization Program CEWES
Major Shared Resource Center through

Programming Environment and Training (PET)

Supported by Contract Number: DAHC 94-96-C0002
Nichols Research

Views, opinions, and/or findings contained in this report are those of the author(s) and should not be
construed as an official Department of Defense position, policy, or decision unless so designated by
other official documentation.

Object Web (Java/CORBA) based RTI to support Metacomputing M&S

G.C. Fox, W. Furmanski and H. T. Ozdemir
Northeast Parallel Architectures Center, Syracuse University, Syracuse NY 13244-4100

gcf@npac.syr.edu, furm@npac.syr.edu

Abstract

We present here our Pragmatic Object Web based approach to High Performance Modeling and
Simulation and we describe the associated middleware software recently prototyped at NPAC:
JWORB (Java Web Object Request Broker) which integrates HTTP and IIOP protocols, and
Object Web RTI which implements DMSO RTI 1.3 on top of the JWORB based CORBA / Java
software bus. We explain how JWORB and OW RTI are used to build WebHLA – an interactive
FMS training environment and we outline our plan towards WebHLA based Virtual Prototyping
Environments for Testing, Evaluation and Simulation Based Acquisition.

Introduction

Virtual Prototyping Environments for T&E require integration of several M&S software modules,
including simulators for tested objects, their parts, and suitable synthetic environments they
operate in and interact with. Such integration of diverse simulation paradigms will be soon most
conveniently performed within the new High Level Architecture (HLA) promoted by DMSO to
enforce DoD-wide simulation interoperability. HLA includes the object models specified by the
Object Model Template (OMT) and the Run-Time Infrastructure (RTI), acting as a software bus
that supports interaction between HLA objects (federates) within applications (federations).

In parallel with these developments in the DoD M&S, new Web/Commodity standards are
emerging or consolidating in the area of distributed objects and componentware such as CORBA,
Java/RTI and DCOM (see Fig. 1). Current HLA is a custom distributed object model but DMSO's

)LJ �� 7HFKQRORJ\ &RQYHUJHQFH 5RDGPDS� 5LJKW DQG OHIW
FROXPQV LOOXVWUDWHV WKH HYROXWLRQ RI :HE�&RPPRGLW\ DQG
0	6 WHFKQRORJLHV� UHVSHFWLYHO\� PLGGOH FROXPQ LOOXVWUDWHV
WKH PDMRU WHFKQRORJ\ LQVHUWLRQ WKUHVKROGV WKDW DIIHFW ERWK
HYROXWLRQ SDWKZD\V�

)LJ �� -:25% EDVHG 3UDJPDWLF 2EMHFW $UFKLWHFWXUH� D
PHVK RI -:25% VHUYHUV FRQQHFWHG YLD ,,23 SURWRFRO
IRUPV WKH &25%$ VRIWZDUH EXV LQ WKH PLGGOHZDUH DQG
OLQNV YLD +773�,,23 WR WKH %URZVHU IURQW�HQGV DQG
YLD WKH GHGLFDWHG SURWRFROV WR WKH OHJDF\ EDFNHQGV�

longer range plan includes transferring HLA to industry as CORBA Facility for Modeling and
Simulation. Anticipating these developments, we are currently building as part of our HPCMP
FMS PET activities at NPAC an Object Web based RTI prototype which builds on top of our new
JWORB (Java Web Object Request Broker) middleware / integration technology.

JWORB is a multi-protocol Java network server, currently integrating HTTP (Web) and IIOP
(CORBA) and hence acting both as a Web server and a CORBA broker. Such multi-server
architecture enforces software economy and allows us to efficiently prototype new interactive
Web standards such as XML, DOM or RDF in terms of a solid software engineering services and
facilities of CORBA.

We are now testing this concept and extending JWORB functionality by building DMSO RTI
support as a JWORB service. Such Object Web RTI uses Common Object Services of CORBA
such as Naming, Event, Relationship, Notification etc. to build the core RTI objects such as
RTIAmbassador, FederateAmbassador, RTIExecutive and FederationExecutive, using the
Web/Java implementation framework.

Due to the Web/CORBA integration enabled by JWORB, we will be able to inherit the growing
arsenal of the Web/Commodity front-end technologies such as Java2D, Java3D or VRML. We
are also working on CORBA/COM bridge support in JWORB which will enable interfaces to
Microsoft graphics and multimedia technologies such as DirectX. Such a broad spectrum of
commodity visualization techniques, integrated with the simulation engine/bus of RTI is of
particular relevance for the T&E simulations that require a variety of front-end technologies to
support object authoring, scenario development, runtime monitors and the analysis of the test
databases.

Other JWORB related activities at NPAC include: a) new version of WebFlow, a visual dataflow
authoring environment for 3-tier Web/Commodity based distributed computing, which uses the
JWORB based middleware; and b) JWORB interface/wrappers for Globus Metacomputing
Toolkit by Argonne, used in several HPC Labs [10]. Hence, our JWORB based RTI will offer a

)LJ �� -:25% EDVHG 2EMHFW :HE 57, $UFKLWHFWXUH� 57, LV
LPSOHPHQWHG LQ -DYD DQG SDFNDJHG DV WZR PDMRU UHPRWH
&25%$ REMHFWV�)HGHUDWH $PEDVVDGRU DQG 57,
$PEDVVDGRU� :HE IURQW�HQGV VXFK DV :HE)ORZ
IDFLOLWDWHUHPRWH FRQWURO� LQWHUDFWLYH VWHHULQJ DQG YLVXDO
DXWKRULQJ RI +/$ DSSOLFDWLRQV

)LJ �� 2EMHFW :HE 57, EDVHG DUFKLWHFWXUH IRU
PHWDFRPSXWLQJ)06 HQYLURQPHQW� 0	6 HQYLURQPHQWV
LQ WKH LQGLYLGXDO 'R' ODEV� ORFDOO\ FRQQHFWHG YLD '062
57, RU +3& 57,� DUH LQWHUFRQQHFWHG YLD 2EMHFW :HE 57,
WR IRUP D GLVWULEXWHG PHWDFRPSXWHU�

natural integration platform for bringing together the HLA and HPC domains in service for
advanced T&E applications such as Virtual Prototyping or Simulation Based Acquisition.
This paper presents the overview of NPAC JWORB activities, followed by the description of the
early prototype of JWORB based Object Web RTI and our planned next steps.

1. Pragmatic Object Web

Recent developments in Internet/Intranet technologies start influencing the whole field of
distributed computing, both in its enterprise and science & engineering domains. Most notably,
Java appeared during the last few years as the leading language candidate for distributed systems
engineering due to its elegant integrated support for networking, multithreading and portable
graphical user interfaces.

While the "Java Platform" or "100% Pure Java" philosophy is being advocated by Sun
Microsystems, industry consortium led by the OMG pursues a multi-language approach built
around the CORBA model. It has been recently observed that Java and CORBA form a perfect
match as two complementary enabling technologies for distributed system engineering. In such a
hybrid approach, referred to as Object Web [1], CORBA is offering the base language-
independent model for distributed objects and Java offers a language-specific implementation
engine for the CORBA brokers, clients and servers.

Meanwhile, other total solution candidates for distributed objects/components are emerging such
as DCOM by Microsoft or WOM (Web Object Model) by the World-Wide Web Consortium.
However, standards in this area and interoperability patterns between various approaches are still
in the early formation stage. For example, recent OMG/DARPA workshop on compositional
software architectures [2] illustrated very well both the growing momentum and the multitude of
options and the uncertainty of the overall direction in the field. A closer inspection of the
distributed object/component standard candidates indicates that, while each of the approaches
claims to offer the complete solution, each of them in fact excels only in specific selected aspects
of the required master framework. Indeed, it seems that WOM is the easiest, DCOM the fastest,
pure Java the most elegant and CORBA the most complete solution.

In our Pragmatic Object Web [3] approach at NPAC we adopt the integrative methodology i.e.
we setup a multiple-standards based framework in which the best assets of various approaches
accumulate and cooperate rather than competing. We start the design from the middleware which
offers a core or a `bus' of modern 3-tier systems and we adopt Java as the most efficient
implementation language for the complex control required by the multi-server middleware. We
adopt CORBA as the base distributed object model at the Intranet level, and the (evolving) Web
as the world-wide distributed (object) model. System scalability requires fuzzy, transparent
boundaries between Intranet and Internet domains which therefore translates into the request of
integrating the CORBA and Web technologies. We implement it by building a Java server
(JWORB) [4] which handles multiple network protocols and includes support both for HTTP and
IIOP. On top of such Pragmatic Object Web software bus, we implement specific computation

and collaboratory services.

2. JWORB (Java Web Object Request Broker) based middleware

JWORB [4] is a multi-protocol extensible server written in Java. The base server, illustrated in
Fig. 2, has HTTP and IIOP protocol support. It can serve documents as an HTTP Server and it
handles the IIOP connections as an Object Request Broker. As an HTTP server, JWORB supports
base Web page services, Servlet (Java Servlet API) and CGI 1.1 mechanisms. In its CORBA
capacity, JWORB is currently offering the base remote method invocation services via CDR
based IIOP and we are now implementing the Interface Repository, Portable Object Adapter and
selected Common Object Services.

After the core JWORB server starts up, it looks at configuration file to find out which protocols
are supported and it loads the necessary protocol classes for each protocol (Definition, Tester,
Mediator, Configuration). Definition Interface provides the necessary Tester, Configuration and
Mediator objects. Tester object looks at the current connection's stream and decides whether it
can interpret this connection or not. Configuration object is responsible for the configuration
parameters of a particular protocol. Mediator object serves the connection. New protocols can be
added simply by implementing the four classes described above and by registering a new protocol
with the JWORB server.

After JWORB accepts a connection, it asks each protocol handler object whether it can recognize
this protocol or not. If JWORB finds a handler which claims that it can serve this connection,
then this protocol handler deals with this connection. Current algorithm looks at each protocol
according to their order in the configuration file. This process can be optimized with randomized
or prediction based algorithm. At present, only HTTP and IIOP messaging is supported and the
current protocol is simply detected based on the magic anchor string value (GIOP for IIOP and
POST, GET, HEAD etc. for HTTP).

)LJ �� 2Q�OLQH VRIWZDUH GRFXPHQWDWLRQ RI 2EMHFW :HE
57, ZLWKLQ WKH :HE+/$ EDVHG)06 7UDLQLQJ 6SDFH
XQGHU GHYHORSPHQW�

)LJ �� :HE+/$ EDVHG 9LUWXDO 3URWRW\SLQJ (QYLURQPHQW� D
PHVK RI -:25% VHUYHUV LPSOHPHQWV 2EMHFW :HE 57, LQ WKH
PLGGOHZDUH DQG OLQNV WR D VXLWH RI :HE EDVHG DXWKRULQJ�
SODQQLQJ DQG DQDO\VLV IURQW�HQG WRROV� DQG WR &25%$�
-DYD &20 RU :20 ZUDSSHG OHJDF\ VLPXODWLRQ EDFNHQGV�

3. High Level Architecture and Run-Time Infrastructure

High Level Architecture (HLA) [6] under development by the Defense Modeling and Simulation
Office (DMSO) offers a common integration and interoperability platform for a broad spectrum
of simulation paradigms. These include real-time (DIS) models used for combat training
simulations, logical-time / event-driven models used for forces simulation, and faster-than-real-
time models used in analysis simulations.

HLA is a distributed object technology with the object model defined by the Object Model
Template (OMT) specification and including the Federation Object Model (FOM) and the
Simulation Object Model (SOM) components. HLA FOM objects interact by exchanging HLA
interaction objects via the common Run-Time Infrastructure (RTI) acting as a software bus
similar to CORBA. Current HLA/RTI follows a custom object specification but DMSO's longer
term plans include transferring HLA to industry via OMG CORBA Facility for Interactive
Modeling and Simulation.

At NPAC, we are anticipating these developments are we are building a prototype RTI
implementation in terms of Java/CORBA objects using the JWORB middleware. Although
coming from the DoD computing domain, RTI follows generic design patterns and is applicable
to a much broader range of distributed applications, including modeling and simulation but also
collaboration, on-line gaming or visual authoring. From the HPCC perspective, RTI can be
viewed as a high level object based extension of the low level messaging libraries such as PVM
or MPI. Since it supports shared objects management and publish/subscribe based multicast
channels, RTI can also be viewed as an advanced collaboratory framework, capable of handling
both the multi-user and the multi-agent/multi-module distributed systems [7][8][9]. In the
following, we summarize the ongoing NPAC work on JWORB based RTI prototype
implementation.

4. JWORB based RTI Prototype at NPAC

RTI is given by some 150 communication and/or utility calls, packaged as 6 main management
services: Federation Management, Object Management, Declaration Managmeent, Ownership
Management, Time Management, Data Distribution Management, and one general purpose utility
service.

Our RTI design, illustrated in Fig. 3, is based on 9 CORBA interfaces, including 6 Managers, 2
Ambassadors and RTIKernel. Since each Manager is mapped to an independent CORBA object,
we can easily provide minimal support for distributed management by simply placing individual
managers on different hosts.

The communication between simulation objects and the RTI bus is done through the
RTIambassador interface. The communication between RTI bus and the simulation objects is
done by their FederateAmbassador interfaces. Simulation developer writes/extends
FederateAmbassador objects and uses RTIambassador object obtained from the RTI bus.
RTIKernel object knows handles of all manager objects and it creates RTIambassador object
upon the federate request. Simulation obtains the RTIambassador object from the RTIKernel and
from now on all interactions with the RTI bus are handled through the RTIambassador object.
RTI bus calls back (asynchronously) the FederateAmbassador object provided by the simulation
and the federate receives this way the interactions/attribute updates coming from the RTI bus.

Federation Manager object is responsible for the life cycle of the Federation Execution. Each
execution creates a different FederationExecutive and this object keeps track of all federates that
joined this Federation.

Object Manager is responsible for creating and registering objects/interactions related to
simulation. Federates register the simulated object instances with the Object Manager. Whenever
a new registration/destroy occurs, the corresponding event is broadcast to all federates in this
federation execution.

Declaration Manager is responsible for the subscribe/publish services for each object and its
attributes. For each object class, a special object class record is defined which keeps track of all
the instances of this class created by federates in this federation execution. This object also keeps
a seperate broadcasting queue for each attribute of the target object so that each federate can
selectively subscribe, publish and update suitable subsets of the object attributes.
Each attribute is currently owned by only one federate who is authorized for updating this
attribute value. All such value changes are reflected via RTI in all other federates. Ownership
Management offers services for transfering, maintaining and querying the attribute ownership
information.

We are currently implementing the Time Management service which offers support for logical
time handling, and the data Distribution Management which offers advanced publishe/subscribe
services via routing spaces or multi-dimensional regions in the attribute value space.

In parallel with the first pass prototoype implementation, we are also addressing the issues of
more organized software engineering in terms of Common CORBA Services. For example, we
intend to use the CORBA Naming Service to provide uniform mapping between the HLA object
names and handles, and we plan to use CORBA Event and Notification Services to support all
RTI broadcast/multicast mechanisms. This approach will assure quality of service, scalability and
fault-tolerance in the RTI domain by simply inheriting and reusing these features, already present
in the CORBA model.

5. Next Steps

We outlined here our Pragmatic Object Web based integration approach and we discussed in
more detail the NPAC implementation of the RTI software bus in the JWORB framework. We
intend to use our RTI both for DoD-specific high performance M&S applications within our
WebHLA [8][9] project with the DoD High Performance Computing Modernization Office, and
for other interactive distributed Web/Commodity application domains such as synchronous and
asynchronous collaboration or visual dataflow authoring environments.

Our first application of Object Web RTI under development is the interactive FMS Training
Space [9][13] (see also Fig. 5). This is based on a simple observation that HLA/RTI admits both
live and synthetic participants and hence it offers a natural support for interactive hands-on
distance training with the Web browser front-ends and Object Web RTI based middleware
software bus. Such training space can be useful for exposing several ‘televirtual’ simulation
environments, and is particularily suitable for teaching HLA itself as well as the associated FMS
technologies such as SPEEDES or IMPORT. We call such environment WebHLA and we are
currently building the Web linked database support for on-line documentation as well as simple
interactive demos such as 3D-extended version of DMSO Jager [11]. In general, WebHLA
students, instructors, mentors and the target systems being taught are mapped on individual

WebHLA federates and suitably synchronized via the RTI Management Services. Our first
courses in the FMS Training Space will cover base HLA/RTI, followed by more advanced
modules such as SPEEDES, E-ModSAF and IMPORT.

Having tested Object Web RTI in a multi-player interactive training environment, we will apply it
in the next step for building Virtual Prototyping Environments for T&E applications such as
currently planned in the Virtual Proving Ground project. The OW RTI based connectivity
between various DoD labs participating in metacomputing scale simulations is presented in Fig.
4, whereas Fig. 6 illustrates the overall architecture of such systems. Middleware is given by a
mesh of JWORB servers, implementing distributed RTI and acting as containers of WebFlow
modules, suitably mapped on CORBA components, Enterprise JavaBeans or ActiveX controls.
Only one lab activities are exposed and linked with other labs, participating in a joint VPE
session. Three user workstations are engaged in the individual steps of the virtual prototyping
cycle. The design station (left) offers VRML or DirectX/Chrome [12] based ‘televirtual’ tools to
develop (or fine-tune in the runtime) an engineering model for a federate. The simulation station
(center) offers WebFlow visual dataflow tools [11] to setup (or customize in the runtime) a
federation representing a particular test operation procedure. The analysis station reads the
simulation output data from either a log storage in an off-line mode or in the real-time from the
RTI, and it offers an active compound document interfaces (perhaps using XML [13]) including
dynamic plots, charts, monitors, steering controls etc.

Such VPEs for Testing, Evaluation and Simulation based Acquisition are clearly raising highly
non-trivial software engineering, interoperability and integration challenges but we believe they
can be realistically built now if we adhere to the emergent family of open standards coming from
the several domains of the government, Web, commodity and enterprise computing and
accumulated in our Pragmatic Object Web based WebHLA framework.

6. References

1. Robert Orfali and Dan Harkey, Client/Server Programming with Java and CORBA , 2nd
Edition, Wiley 1998.

2. Craig Thompson, OMG/DARPA Workshop on Compositional Software Architectures,
Monterey, CA January 6-8 1998

3. G. C. Fox, W. Furmanski, H. T. Ozdemir and S. Pallickara, Building Distributed Systems
for the Pragmatic Object Web, book in progress, Wiley '98.

4. G. C. Fox, W. Furmanski and H. T. Ozdemir, JWORB - Java Web Object Request Broker
for Commodity Software based Visual Dataflow Metacomputing Programming
Environment , submitted for the HPDC-7, Chicago, IL, July 28-31, 1998.

5. D. Bhatia, V. Burzevski, M. Camuseva, G. Fox, W. Furmanski and G. Premchandran,
WebFlow - a visual programming paradigm for Web/Java based coarse grain distributed
computing , June '97, in the special issue of Concurrency: Practice and Experience on
Java for Scientific Computing.

6. High Level Architecture (HLA) by the Defence Modelling and Simulation Office
(DMSO)

7. D. Dias, G. C. Fox, W. Furmanski, V. Mehra, B. Natarajan, H. T. Ozdemir, S. Pallickara,
Z. Ozdemir, Exploring JSDA, CORBA and HLA based MuTech's for Scalable
Televirtual (TVR) Environments , presented at the Workshop on OO and VRML,
VRML98 Conference, Monterey, CA, Feb 16-19,1998.

8. D. Bernholdt, G. C. Fox, W. Furmanski, B. Natarajan, H. T. Ozdemir, Z. Odcikin
Ozdemir and T. Pulikal, WebHLA - An Interactive Programming and Training
Environment for High Performance Modeling and Simulation , in Proceedings of the
DoD HPC 98 Users Group Conference, Rice University, Houston, TX, June 1-5 1998.

9. G.C.Fox, W. Furmanski, S. Nair, H. T. Ozdemir, Z. Odcikin Ozdemir and T. Pulikal,
“WebHLA - An Interactive Programming and Training Environment for High
Performance Distributed FMS”, to appear in Proceedings of the Simulation
Interoperability Workshop SIW Fall 98, Orlando, FL, September 14-18, 1998.

10. G. C. Fox, W. Furmanski, T. Haupt, E. Akarsu and H. T. Ozdemir, “HPcc as High
Performance Commodity Computing on top of integrated Java, CORBA, COM and Web
standards”, in Proceedings of Euro-Par ’98, Southampton, UK, 1-4 September 1998

11. G. C. Fox, W. Furmanski, B. Goveas, B. Natarajan and S. Shanbhag, “WebFlow based
Visual Authoring Tools for HLA Applications”, to appear in Proceedings of the
International Test and Evaluation Association (ITEA) Workshop on High Performance
Computing for Test and Evaluation, Aberdeen MD, July 13-16 1998.

12. G. C. Fox, W. Furmanski, Subhash Nair and Z. Odcikin Ozdemir, “Microsoft DirectPlay
meets DMSO RTI for Virtual Prototyping in HPC T&E Environments”, to appear in
Proceedings of the International Test and Evaluation Association (ITEA) Workshop on
High Performance Computing for Test and Evaluation, Aberdeen MD, July 13-16 1998.

13. G. C. Fox, W. Furmanski and T. Pulikal, “Evaluating New Transparent Persistence
Commodity Models: JDBC, CORBA PPS and OLEDB for HPC T&E Databases”, to
appear in Proceedings of the International Test and Evaluation Association (ITEA)
Workshop on High Performance Computing for Test and Evaluation, Aberdeen MD, July
13-16 1998.

